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Wetting of a symmetrical binary fluid mixture on a wall
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We study the wetting behavior of a symmetrical binary fluid below the demixing temperature at a nonse-
lective attractive wall. Although it demixes in the bulk, a sufficiently thin liquid film remains mixed. On
approaching liquid vapor coexistence, however, the thickness of the liquid film increases and it may demix and
then wet the substrate. We show that the wetting properties are determined by an interplay of the two length
scales related to the density and the composition fluctuations. The problem is analyzed within the framework
of a generic two component Ginzburg-Landau functional~appropriate for systems with short-ranged interac-
tions!. This functional is minimized both numerically and analytically within a piecewise parabolic potential
approximation. A number of surface transitions are found, including first-order demixing and prewetting,
continuous demixing, a tricritical point connecting the two regimes, or a critical end point beyond which the
prewetting line separates a strongly and a weakly demixed film. Our results are supported by detailed Monte
Carlo simulations of a symmetrical binary Lennard-Jones fluid at an attractive wall.
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I. INTRODUCTION

Phase transitions are well known to be influenced by g
metrical confinement@1#. In practice, confinement is ofte
imposed by rigid external constraints, for example, the s
faces of porous or artificially nanostructured media. Ho
ever, it can also be an inherent feature of a system, as oc
for a liquid wetting film bound to a solid substrate and
equilibrium with its vapor@2#. In such a situation the liquid
is confined between the rigid substrate and the flex
liquid-vapor interface.

The effects of confinement are particularly pronounced
the region of critical points. Under such conditions the s
tem exhibits strong order parameter fluctuations, the corr
tion length of which may become comparable with the line
dimension of the confined system. When this occurs the
fects of confinement are felt not just near the confining s
faces, but propagate throughout the system@3#.

Critical fluctuation is relevant to the properties of liqu
wetting films if the liquid in question possesses an additio
internal degree of freedom. Then the state of the liquid
described not only by its number density, but by an ad
tional parameter measuring the degree of internal order.
amples are binary liquids, where the additional order para
eter is the relative concentration of species, and ferroflu
where it is the magnetization. In such systems the geom
cal constraint~i.e., the film thickness! can itself depend on
the state of order in the liquid film. For example, simulati
and experiment have recently shown that critical concen
tion fluctuations can change the equilibrium thickness o
wetting layer of a binary liquid—the so-called critical C
simir effect @4–6#.

It transpires, however, that the interesting consequen
of interplay between the degree of order in the wetting la
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and film thickness are not limited to the critical point itse
To illustrate this, it is instructive to consider the followin
Gedankenexperiment. Let us take a symmetrical bina
fluid, i.e., a fluid in which particles of the same species ha
one strength of interaction, while interactions between d
similar species have another strength. As elucidated in R
@7#, it is possible to arrange for such a system to exhibi
second-order line of liquid-liquid demixing transitions term
nating at a critical end point~CEP!. In general a CEP occur
when a line of second-order phase transitions intersects
is truncated by a first-order phase boundary delimiting a n
noncritical phase. In the symmetrical binary fluid mixtur
the phase diagram is spanned by three thermodynamic fi
~T, m, h!, whereT is the temperature,m is a chemical poten-
tial, andh is an ordering field coupling to the relative con
centrations of the two fluid components. In this paper
consider the caseh50, in which two demixed liquid phase
coexist. By tuningT andm, one finds a critical demixing~or
‘‘ l line’’ !, where the separate liquid phases merge int
single mixed liquid phase. Thisl line meets the first-orde
line of liquid-gas transitionsms(T) at the critical end point
(Te ,me), see Fig. 1~a!. For T,Te , the phase boundary
ms(T) constitutes a triple line along which the demixed li
uid phases coexist with the gas phase, while forT
.Te ,ms(T) defines the region where the mixed liquid an
the gas phase coexist. Precisely at the critical end point
critical liquid mixture coexists with the gas phase. The pha
diagram in the density temperature plane is shown in F
1~b!.

Suppose now that the fluid is placed in contact with
nonselective attractive substrate~wall! acting equally on both
species. If the wall is sufficiently attractive, complete wetti
occurs at and above the critical end point temperatureTCEP
as liquid-vapor coexistence is approached from the va
©2001 The American Physical Society01-1
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side. But what happens forT,TCEP? Far from coexistence
the wetting film is sufficiently thin that demixing will cer
tainly be suppressed. On approaching the coexistence c
however, the film thickness grows and it is tempting to arg
that it eventually exceeds the correlation length of compo
tion fluctuations, whereupon the film spontaneously demix

Notwithstanding the appealing simplicity of this arg
ment, it turns out to contain two flaws that render the act
situation rather more complex. First, the thickness of
mixedwetting film will not increase beyond all limits below
the critical end pointTCEP. This is because a hypothetic
mixed bulk liquid would not coexist with the vapor phase
the same chemical potentialm0 as a demixed liquid, bu
rather at a chemical potential, which is shifted by

m* 2m0}~TCEP2T!22a ~1.1!

towards the liquid side in them2T plane @8,9#. Since the
thickness of the mixed film grows as ln(m*2m) @2,10#, it is
bounded from above by

l * } ln~m* 2m0!} ln~TCEP2T!. ~1.2!

The maximum thicknessl * of a hypothetical mixed film thus
diverges logarithmically on approachingTCEP. In contrast,

FIG. 1. Schematic phase diagram of the symmetrical bin
fluid mixture~a! in the temperature-chemical potential plane and~b!
in the density-temperature plane. Dashed line indicates critical
mixing transitions, full curve the first-order liquid-vapor coexis
ence line or envelope, respectively.
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the correlation lengthj diverges much faster, likej}(TCEP

2T)2n and will thus always exceedl * sufficiently close to
TCEP.

The second flaw in our argument is its implicit assum
tion that the composition or order parameter profile is co
fined in an effectively steplike density profile, i.e., that t
interfacial width between the liquid and the vapor is mu
smaller than the correlation length of composition fluctu
tions. Although this is true in the region of the critical en
point, for temperature sufficiently belowTCEP the correlation
lengths of density and composition fluctuations can be co
parable and the interplay between the two subtle.

In the present paper, we deploy a mean-field calculat
and Monte Carlo simulation to elucidate the range of p
sible wetting behavior of a symmetrical binary fluid mixtu
at a nonselective attractive wall for temperatures bel
TCEP. For the sake of simplicity, we have chosen to igno
long-range dispersion forces in the analytical calculatio
instead taking the interactions to be short ranged. This allo
us to base our study on a generic Ginzburg-Landau mo
which we solve numerically and analytically within a squa
gradient approximation. The latter leads to the construct
of a film free energy~effective interface potential! highlight-
ing the role of the different length scales involved in t
problem. We show that the competition of length scales
sults in wetting phase behavior considerably more comp
than has hitherto been appreciated. The analytical results
compared with~and supported by! detailed Monte Carlo
simulations of a binary Lennard-Jones fluid in a semi-infin
geometry, interacting with a nonselective attractive subst
via dispersion forces.

With regard to previous related work, the sole discuss
of wetting of symmetrical binary fluids at a nonselective w
~of which we are aware! is that of Dietrich and Schick@11#
who considered them in a sharp kink approximation tre
ment of binary fluids having long-ranged interactions. Mo
other work on the wetting properties of binary fluids h
focused on the case of a selective substrate~favoring one
component! @10–14#. Although such models correspon
more closely than ours to experimental conditions@10,15#,
they lack the aspect of simultaneous demixing ordering
wetting, which is of interest to us here. It should be stress
however, that realizations of fluids having symmetrical int
nal degrees of freedom do in fact exist, notably in the fo
of ferrofluids@16#, so our model is of more than purely the
oretical interest.

More general studies of wetting in systems with mo
than one order parameter and associated length scales
been discussed by Hauge@17#, who pointed out that wetting
exponents may become nonuniversal even on the mean-
level due to the competition of length scales. Later stud
have often focused on this nonuniversality, e.g., in the c
text of wetting phenomena in superconductors@18#, alloys
@19,20#, and related systems@21#.

The present paper is organized as follows. In Sec. II
introduce our Ginzburg-Landau free-energy functional a
obtain its wetting behavior in the limits of infinite and van
ishing order-parameter stiffness. At intermediate values
the stiffness parameter the wetting behavior is found firs
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WETTING OF A SYMMETRICAL BINARY FLUID . . . PHYSICAL REVIEW E 63 031201
via an analytical minimization of the functional within
piecewise parabolic potential approximation~Sec. II B!, and
then ~in Sec. II C! via a numerical minimization of the free
energy functional to obtain the density order parameter p
files. In Sec. III A we report the results of grand canonic
Monte Carlo studies of a symmetrical binary Lennard-Jo
fluid at an attractive structureless wall. The density a
order-parameter profiles with respect to the wall are obtai
along a subcritical isotherm for a number of different wa
fluid potential strengths. Finally we compare and discuss
mean-field and simulation results in Sec. IV.

II. GINZBURG-LANDAU THEORY

Our theoretical studies are based on a generic Ginzb
Landau functional for a system with two order paramet
f(rW,z) andm(rW,z):

F5E drWE
0

`

dzH g

2
~“f!21

g

2
~“m!21 f ~m,f!J

1E drW f s~m,f!uz50 ~2.1!

with the bulk free-energy density

f ~m,f!52
af

2
f21

bf

4
f42

am

2
m21

bm

4
m41mf2km2f

~2.2!

and the bare surface free energy at the wall

f s~m,f!5
Cf

2
f21Hff1

Cm

2
m2. ~2.3!

The z axis is taken to be perpendicular to the wall and*drW
integrates over the remaining spatial dimensions. In our c
the quantitym is related to the difference between the part
densities of the two components,m}(rA2rB), andf to the
total density,f}(r2r0), where the reference densityr0 is
chosen in the liquid-vapor coexistence region such the cu
term proportional to (r2r0)3 in Eq. ~2.2! vanishes. Below
the liquid-vapor critical point, it is convenient to set the un
of f, m, F and of the length such thatbm5bf5af5g51,
and to defineu5am21. The bulk free-energy density the
takes the form

f ~m,f!52
1

2
f21

1

4
f42

u

2
m21

1

4
m4

2mf1k~12f!m2. ~2.4!

The bulk properties of this model have been discussed ea
@7#. A l-line ul(m) of continuous transitions separates t
mixed fluid from the demixed fluid at large negativem, cor-
responding to large densitiesf. As long ask,1, it is termi-
nated by the onset of liquid-vapor coexistence at a crit
end point (uCEP50, mCEP50). The parameterm is field like
and u is temperaturelike,u}(T2TCEP), whereTCEP is the
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critical end-point temperature. AboveuCEP, liquid-vapor co-
existence is encountered atm50, and belowuCEP, at

mc5
u2

8~12k2!
. ~2.5!

The coexisting liquid and gas phases are characterized by
order parameters~to linear order inm!

m2* 50, f2* 5212m/2 ~2.6!

in the gas phase, and

m1* 5
u2km

12k2 , f1* 512
m

2
1

k

2
m1*

2 ~2.7!

in the liquid phase. These expressions are also valid in
regime where the liquid or gas phase are metastable.

Minimizing the functional~2.1! yields the Euler Lagrange
equations

g
d2f

~dz!2 5
] f

]f
, g

d2m

~dz!2 5
] f

]m
, ~2.8!

with the boundary conditions

g
df

dz U
z50

5
] f s

]f
, g

dm

dz U
z50

5
] f s

]m
. ~2.9!

We wish to study a situation where the mixed liquid (m
[0) wets the wall atm50 ~coexistence between vapor an
mixed liquid!. To ensure this under all circumstances, w
chooseHf52f0Cf with f0.f1* and take the limitCf

→`, which is equivalent to constraining the surface dens
at the fixed valuef(0)5f0 . The surface couplingCm is
taken to be positive. It accounts for weakening of the dem
ing tendency at the surface due to the reduced numbe
interacting neighbors.

One possible solution of the Euler-Lagrange equations
scribes a mixed film at a wall. In this case,m(z)50 every-
where and one is left with one order parameterf only. The
bulk value off in the metastable mixed phase isf1

(0)51
2m/2. The standard way of solving the problem@2# shall be
sketched briefly for future reference. One begins by ide
fying the integration constant

1

2 S df

dzD 2

2 f ~f!1 f ~f2
~0!![0, ~2.10!

which gives an expression fordf/dz as a function off. The
surface free energy can then be expressed as an integral
f

Fexc
~0!5E

f2
~0!

f0
dfA2@ f ~f!2 f ~f2

~0!!# ~2.11!

and the excess densityfexc
(0)51/2*0

`dz@f(z)2f2
(0)# at the

surface can be calculatedvia
1-3
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fexc
~0!5

1

2 Ef2
~0!

f0 df~f2f2
~0!!

A2@ f ~f!2 f ~f2
~0!!#

. ~2.12!

As long asu f (f1
(0)2 f (f2)u!(f1

(0)2f2)2f 9(f1
(0)), which

is true form!2, the main contribution to this integral stem
from f values aroundf1

(0) . The numerator in the integran
can then be expanded aroundf1

(0) . Carrying this to second
order and assumingm!(f02f1

(0)), one obtains

fexc
~0!'A1

2
lnS 2

f1
~0!2f0

D , ~f0,f1
~0!!, ~2.13!

fexc
~0!'A1

2
lnS 4~f02f1

~0!!

m D , ~f0.f1
~0!!. ~2.14!

Above the bulk demixing transition, the mixed film thus we
the wall at coexistence (m→0) for f0.f1

(0) , and maintains
a finite thickness forf0,f1

(0) . We will choosef0.f1
(0)

hereafter. From Eq.~2.11!, one calculates the surface fre
energy to leading order inm and (f02f1

(0))

Fexc
~0!5

2&

3
1

1

&
~f02f1

~0!!2. ~2.15!

Below the bulk demixing transition,m5mc.0 at coexist-
ence and the thickness of the mixed film remains finite un
all circumstances.

In the following, we shall first analyze the wetting beha
ior for the limiting cases where the order parameter varies
very short length scales (g/m1*

2→0) and on long length
scales (g/m1*

2→`) compared to the density. Then we w
discuss the general case of intermediateg, first analytically
in an approximation where the potential~2.4! is replaced by
a piecewise quadratic potential, and then numerically w
the full potential~2.4!.

A. Limiting cases

We consider first the wetting behavior at (g/m1*
2→0). In

this case,m adapts locally tof, and the order paramete
profile m(z) can be written asm@f(z)# with m(f)5u
12k(f21) for f,12u/2k and m(f)50 otherwise.
Hence we are left with the effective one order parame
problem of calculating the density profilef(z) in the slightly
altered potentialf̂ (f)5 f @m(f),f#. Sincef̂ (f) is a smooth
function with two minima, one can proceed as sketch
above for the mixed film, with the analogous result: T
demixed film wets the wall atf.f1* .

The analysis of the opposite case, (g/m1*
2→`), is some-

what more involved. Heref adapts locally tom; however,
the bulk equation] f /]f5f32f1m2km250 has two so-
lutions f6(m). One conveniently separates the profiles in
four parts~I!–~IV ! as indicated in Fig. 2. The regions~I! and
~III ! are narrow slabs wheref(z) varies rapidly andm can
be approximated by a constant,m5m0 at the surface~I! and
m2 at the interface~III !. In region ~I!, f drops from it’s
surface valuef0 to the local equilibrium valuef1(m0), and
03120
r
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in region ~III !, it switches fromf1(m2) to f2(m2). The
other two regions,~II ! and ~IV !, are much wider; the orde
parameterm(z) varies slowly andf(z) adjusts locally to
m(z), such thatf5f1(m) in region~II ! andf5f2(m) in
region ~IV !.

To make the argument more quantitative, we specify
actual subdivision of the excess free energy of Eq.~2.1!,

Fexc5 f s~m0 ,f0!1FI1FII 1FIII 1FIV ~2.16!

with

FI5E
0

d
dzF1

2 S df

dzD 2

1 f ~m0 ,f!2 f @m0 ,f1~m0!#G
FII 5E

0

l

dzF1

2
gS dm

dz D 2

1 f @m,f1~m!#G ,
FIII 5E

l 2d

l

dzF1

2 S df

dzD 2

1 f ~m2 ,f!2 f @m2 ,f1~m2!#G
1E

l

l 1d
dzF1

2 S df

dzD 2

1 f ~m2 ,f!2 f @m2 ,f2~m2!#G ,
FIV5E

0

l

dzF1

2
gS dm

dz D 2

1 f @m,f2~m!#G .
The calculation for the regions~I!, ~III !, and ~IV ! can pro-
ceed in an analogous way as sketched earlier for the m
film: The profiles off(z) in regions~I!, ~III !, and ofm(z) in
region ~IV ! are monotonic and the integration constant@cf.
Eq. ~2.10!# is known ~zero!. One obtains to leading order i
m and @f02f1(m0)#

FI5A1

2
@f02f1~m0!#21¯ , ~2.17!

FIII 5
2&

3
1O@~u2km2

2!2#, ~2.18!

FIV5
m2

2

2
Ag~4k1km2u. ~2.19!

In the region~II !, the integration constant is unknown,

1

2
gS dm

dz D 2

2 f @m,f1~m!#5p, ~2.20!

FIG. 2. Schematic sketch of density and order parameter pro
in the limit g/m1*

2→`. See text for more explanation.
1-4
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with p.0 if the profile ofm(z) is monotonic, andp,0 if
m(z) is nonmonotonic, like in Fig. 2. A connection betwee
p and the widthl of the film can be established usingl
5*m2

m0dm/udm/dzu in the first case, and

l 5E
m0

mmax dm

udm/dzu
1E

m2

mmax dm

udm/dzu

in the second case, where mmax solves p
52 f @mmax,f1(mmax)#. Next we expand the function
f @m,f1(m)# about it’s minimumm1* , leading to

f @m,f1~m!#'~12k2!m1
4 F S m

m1*
21D 2

2
1

4G . ~2.21!

One deduces the characteristic length scale,

l5A g

2~12k2!

1

m1*
, ~2.22!

which grows very large in the limitg/m1*
2→`. The result

for FII can therefore be expanded in powers ofe2 l /l. After
adding up all contributions regions~I!–~IV ! and minimizing
with respect tom2 , the total excess free energy of the d
mixed film takes the formFexc5Fsurf(m0 ,f0)1F int1V( l )
with the surface contribution

Fsurf5 f s~m0 ,f0!1A1

2
@f02f1~m0!#2

18lmc~12m0 /m1* !2, ~2.23!

the interface contribution

F int5
2&

3
18lmc , ~2.24!

and a surface interface interaction term

V~ l !52~m2mc!l 232lmc~12m0 /m1* !e2 l /l

116lmc@A2~12m0 /m1* !2B#e22l /l, ~2.25!

whereB5@lAg@k2m1*
2(12k2)#/4#21, and A523 or A

51, depending on whether or not the profilem(z) is mono-
tonic.

The result can now be discussed. Atm0,m1* , the leading
term e2 l /l of the potentialV( l ) is attractive, and wetting is
not possible. Atm0.m1* , an infinitely thick demixed film is
metastable at coexistence. It’s free-energy difference to
mixed film DF5Fexc2Fexc

(0) is up to third order inm1*

DF5
1

&
@Ag~12k2!@11~12m0 /m1* !2#m1*

3

1$Cm /&2k@f02f1~m0!#%m0
2#. ~2.26!

The limit g/m1*
2→` can be taken in two ways: eitherg

→` at fixedm1* , or m1* →0 at fixedg. In the first case the
03120
-

e

first term in Eq.~2.26! dominates and the free energy of th
demixed film exceeds that of the mixed film: The film r
mains mixed and dewets accordingly.

The second case is more subtle. Here, the second
dominates, and the free energy of the mixed film may be l
favorable, depending on the ratio ofCm and (f02f1* ).
Note that the density enhancement at the surface,&k(f0

2f1* ), acts as an additional surface coupling, which o
poses the effect ofCm . The parameterCm accounts for the
direct reduction of interacting neighbors right at the surfa
It is counterbalanced by the fact that the densityf0 close to
the surface is higher than in the bulk. If the latter effe
dominates, the film demixes at the surface even form1* →0
or T→Tcep.

B. Analytical results in a piecewise parabolic potential

At fixed m1* , we have seen that the demixed film wets t
substrate in the limitg→0, where the order parameterm
varies much faster than the densityf, and dewets atg
→`, where the density varies much faster than the or
parameter. Now we consider intermediate values ofg, where
the two characteristic length scales become comparable.
from the critical end point, this is the usual case in a bina
liquid, since the interaction ranges responsible for liquid-g
separation and demixing are comparable.

In order to carry further the analytical analysis, we a
proximate the free-energy densityf (f,m) ~2.4! by a piece-
wise quadratic form

f ~f,m!5
1

2
~f2f̃,m2m̃! f5 S f2f̃

m2m̃D 1sm̃, ~2.27!

with three pieces corresponding to the gas phase and the
liquid phases, separated by the lines

fsep~m!52k~m21m1*
22umu1* !1m̃/2 ~2.28!

and m[0 at f.fsep(0). Here m̃5m2mc , s521 for f
.fsep(m) ~gas phase!, s511 for f,fsep(m) ~liquid
phases!, and the parabolae are adjusted to the leading te
in the expansion of the functional~2.4! about its minima,

S f̃
m̃D 5S 21

0 D , f55S 2 0

0 4k D , ~2.29!

for f,fsep(m) ~gas phase!, and

S f̃
m̃D 5S 11km1*

2/2

6m1*
D , f55S 2 72km1*

72km1* 2m1*
2 D ,

~2.30!

for f.fsep(m) ~liquid phases!, where the upper sign hold
for m.0, the lower form,0. The choice~2.28! of fsep
ensures that the potentialf (m,f) is continuous.

In such a potential, profiles of demixed films correspo
to paths in the (f,m) space, which can be separated in
three parts:~i! moving in one of the liquid regions from
(f0 ,m0) to (f1 ,m50); ~ii ! following the edge (m[0) be-
1-5
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tween the two liquid regions from (f1,0) to @fsep(0),0#;
~iii ! moving in the gas region from@fsep(0),0# to ~21, 0!.
On principle, a direct transition from~i! to ~iii ! is conceiv-
able. For the parametersf0 of interest, however, such pro
files turn out to be energetically less favorable than the p
files that have an intermediate~ii !. Profiles of mixed films
have two parts~ii ! and~iii ! only. We shall denotel ~i![ l , l ~ii ! ,
and l ~iii ! , the length of the slab spent in regions~i!, ~ii !, or
~iii !, respectively.

At given slab length and boundary conditions, the fr
energy in each of the slabs can be calculated exactly us

E
0

l

dz
1

2 H S du

dzD
2

1
u2

l2J 5
1

4 H @u~0!1u~ l !#2 tanh
l

2l

1@u~0!2u~ l !#2 coth
l

2lJ .

~2.31!

The calculation is straightforward in the regimes~ii ! and
~iii !. In regime~i!, the free-energy functional has to be d
agonalized first:

F~ i !5
1

2 E0

l

dzH F S dv
dzD

2

1
v2

l1
2G1F S dw

dzD 2

1
w2

l2
2G J

with

l1,2
22511

m1*
2

g
7AS m1*

2

g D 2

1
m1*

2

g
~4k222!11,

~2.32!

S v
wD5

1

Aed1e2d S e2d/2 ed/2

ed/2 2e2d/2D S f2f̃
Ag~m2m̃!

D ,

where we have defined

d5
1

2
lnS 22l1

22

l2
2221D . ~2.33!

The parameterd or alternativelyg/m1*
2 determines the wet

ting behavior. Figure 3 shows the two length scalesl1 and

FIG. 3. Length scalesl1 andl2 vs g/m1*
2 at k50.5. Thin line

showsl1/2 for comparison.
03120
-

e
g

l2 as a function ofg/m1*
2. The lengthl1 is always larger

than l2 . At g/m1*
2@1 or d@0, it characterizes the spatia

variations of m(z) and grows linearly withg/m1*
2; at

g/m1*
2!1 or d!0, it characterizes the variations off(z)

and remains largely independent ofg/m1*
2. These are the

limiting regimes discussed in the previous subsection.
g/m1*

2'1 or d'0, both l1 and l2 are related to linear
combinations off(z) andm(z) @22#.

The further calculation proceeds as follows: The free
ergy in regime~iii ! is given by

F ~ i !5&/2$11@fsep~0!11#2%. ~2.34!

In the region~ii !, the result for the free energy is expanded
powers ofe2& l ( i i ) up to the second order and minimize
with respect tol ( i i ) . The free energy calculated in region~i!
is expanded up to second order in powers ofe2 l /l1 and up to
first order ine2 l /l2, where l[ l ( i ) . The three contributions
are then added up, and the sum is minimized with respec
f1 andm0 at given surface couplingCm . The solution has to
be compared with the free energy of a mixed film, which
calculated analogously.

We only report the result for the caseCm50 here. The
expressions obtained for arbitraryCm are more complicated
but qualitatively similar. Without loss of generality, we ca
assumem.0 in the demixed film. As long asm0.0, the
surface order parameterm0 and the free-energy differenc
DF, between the mixed and demixed film, can then be
panded as

Agm05Agm1* 1i01i1e2 l /l11i2e21/l21i3e22l /l,
~2.35!

DF~ l !5DF ~ i i !1t01t2e2 l /l11t2e2 l /l21t3e22l /l1.

Using the abbreviations

K05
ed1e2d

l1l2
and K65

l1l2

e6dl11e7dl2
,

the coefficients can be written as

i05~l2
212l1

21!K2~f02f̃ !,

i1,2522K0K1K2e6dAgm1* )

i3522K0K2
2 ~118K1e2d/l1!~f02f̃ !, ~2.36!

t05K0@K1gm1*
21K2~f02f̃ !2#,

t1,2562K0K1K2 /l2,1Agm1* ~f02f̃ !,

t35K0K2K1
2 ed~e2d/l22ed/l1!/l2gm1*

2

1K0K2
2 e2d~118K1e2d/l1!/l2~f02f̃ !2,

~2.37!

and withh5m1*
4(12k2)22m̃, p5f02f̃1km1*

2,
1-6
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DF ~ i i !52
1

&
p22

h

2&
S 11 ln

dp2

h D . ~2.38!

When taking the limitsd→6`, one recovers qualitatively
@23# the behavior discussed in the previous section.

The functionDF( l ) can be conceived as an effective i
terface potential for the demixed film. The parameterst i for
a choice off0 (f051.5) and two values ofCm , Cm50
according to Eq.~2.37! andCm50.02, are shown in Fig. 4
One finds thatt1 is always positive,t2 is always negative,
and t3 changes sign from positive to negative asg/m1*

2

increases. The leading term of the potentialF( l ) is thus posi-
tive, and one expects a first-order wetting transition an
prewetting line. On the other hand, the expansions~2.35! are
only valid as long as the surface order parameterm0 is posi-
tive. According to Eq.~2.36!, the coefficientsi i of the ex-
pansion form0( l ) are negative except for the zeroth-ord
term i0 . Hencem0 decreases with film thickness and m
vanish at some thicknessl c . In this case, the film mixes
continuously atl c , and the prewetting line turns into
second-order demixing line sufficiently far from coexisten

C. Numerical solution

The analytical results of the Sec. II B provided insight in
the competition of length scales in the binary fluid and
wetting scenarios, which can be expected on a wall a
result. However, a reliable calculation of actual phase d
grams, including the details of the prewetting line, is n
possible on the basis of the expansion~2.35!. We have thus
supplemented the analytical work by a numerical minimi
tion of the functional~2.1! in the m2f0 plane for selected
sets of parametersg andCm .

The problem is simplified considerably due to the fact t
f(z) is a monotonic function ofz, i.e., m(z) can be ex-
pressed as a functionm(f). The bulk free-energy functiona
in Eq. ~2.1! can thus be rewritten as

FIG. 4. Coefficientst i of interfacial potential vsg/m1*
2 for k

50.5, F051.5, and surface couplingCm50 ~thick lines! and Cm

50.2 ~thin lines!.
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F5E
0

`

dzH 1

2 F11gS dm

df D 2G S df

dzD 2

1 f @m~f!,f#J
5E

f2
*

f0
dfA11gS dm

df D 2

Af @m~f!,f#2 f ~0,f2* !,

where the integration constant~2.10! has been identified and
exploited as usual. Minimization with respect to the functi
m(f) leads to the Euler-Lagrange equation

2g f ~m,f!
d2m

df2 5F11gS dm

df D 2G S ] f

]m
2g

dm

df

] f

]f D ,

~2.39!

which we have solved using the Verlet algorithm.
Some results are shown in Figs. 5, 6, 7, and 8. As ant

pated in the Sec. II B, we find a first-order wetting transitio
a discontinuous prewetting line, and a continuous demix
line. At surface couplingCm.0, the demixing line joins the
prewetting line in a surface critical end point~Fig. 5!. The
prewetting line separates a demixed thick film from a mix
thin film ~see profiles in Fig. 6! before reaching the critica
end point, then two demixed films of different thickness, a

FIG. 5. Phase diagram in them2f0 plane. Parameters arek
50.5, u50.1, andg51., Cm50.2. Solid line indicates first-orde
transition, dashed line second-order transition.

FIG. 6. Density and order-parameter profiles for the coexist
mixed and demixed film at the point in them2f0 plane indicated
by the arrows in Fig. 6.
1-7
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finally vanishes in a critical point. On decreasing the surfa
coupling Cm , the critical end point and the critical poin
move closer to each other, until they merge in a surf
tricritical point.

Figure 7 shows two cases of phase diagrams in thef0
2m plane forCm50 and two differentg at fixedu, i.e., at
fixed bulk order parameterm1* . With increasingg, the
prewetting line shifts towards largerf0 and extends deepe
into the off-coexistence region. Asg→`, it moves tof0
→`, the film remains mixed and thin at all finitef0 . At
g→0, on the other hand, the line becomes flat, approac
f1* , and the tricritical point where it turns into a secon
order line moves tom t→mc . The numerical results thu
agree with the conclusions from Sec. II A.

Figure 8 demonstrates what happens if instead of mak
g larger, one increases the characteristic length scale of o
parameter fluctuations by decreasingu, i.e., approaching the
critical end point~reducingm1* !. Far from liquid-vapor co-
existence, the transition line still moves towards largerf0 .
However, the effect reverses close to coexistence, the de

FIG. 7. Phase diagrams in them2f0 plane for differentg with
u50.1, surface couplingCm50, and parameters as in Fig. 6 oth
erwise. Solid lines indicate first-order transition, dashed lin
second-order transitions.

FIG. 8. Phase diagrams in them2f0 plane for differentu with
g51, surface couplingCm50, and parameters as in Fig. 6 othe
wise. Solid lines indicate first-order transition, dashed lines seco
order transitions.
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ing transition is now shifted to lower surface densitiesf0 .
Furthermore, the length of the prewetting line shrinks inste
of growing.

III. MONTE CARLO SIMULATIONS

In this section we describe Monte Carlo simulation stu
ies of the subcritical wetting behavior of a symmetrical b
nary fluid at a structureless wall.

A. Model and simulation details

The system we have studied is a symmetrical binary flu
having interparticle interactions of the Lennard-Jones~LJ!
form:

u~r i j !54e i j F S s i j

r i j
D 12

2S s i j

r i j
D 6G . ~3.1!

We made the following choice of model parameters:s11
5s225s125s51; e115e225e; and e1250.7e, i.e., inter-
actions between similar species are treated identically,
those between unlike species are weakened. The interpa
potential was truncated at a distance ofRc52.5s and no
long-range correction or potential shift was applied.

The fluid was confined within a cuboidal simulation ce
having dimensionsPx3Py3D, in thex, y, andz coordinate
directions, respectively, withPx5Py[P. The simulation
cell was divided into cubic subcells~of size the cutoffRc! in
order to aid identification of particle interactions. ThusP
5pRc andD5dRc , with p andd both integers. To approxi-
mate a semi-infinite geometry, periodic boundary conditio
were applied in thex andy directions, while hard walls were
applied in the uniquez direction atz50 andz5D. The hard
wall at z50 was made attractive, using a potential design
to mimic the long-ranged dispersion forces between the w
and the fluid@24#:

V~z!5ewF 2

15S sw

z D 9

2S sw

z D 3G . ~3.2!

Herez measures the perpendicular distance from the wall,ew
is a ‘‘well depth’’ controlling the interaction strength, an
we setsw51. No cutoff was employed and the wall pote
tial was made to actequallyon both particle species.

Monte Carlo simulations of this system were perform
using aMETROPOLIS algorithm within the grand canonica
(m,V,T) ensemble@25#. Three types of Monte Carlo move
were employed:~1! particle displacements,~2! particle inser-
tions and deletions,~3! particle identity swaps: 1→2 or 2
→1. To maintain the symmetry of the model, the chemi
potentialsm1 andm2 of the two components were set equ
at all times. Thus only one free parameter,m5m15m2 ,
couples to the overall number densityr5(N11N2)/V. The
other variables used to explore the wetting phase diag
were the reduced well depthe/kBT and the reduced wal
potential ew /kBT. During the simulations, the observable
monitored were the total particle density profile

s

d-
1-8
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r~z!5@N1~z!1N2~z!#/P2, ~3.3!

the number difference order parameter profile,

n~z!5@N1~z!2N2~z!#/P2. ~3.4!

These profiles was accumulated in the form of a histogr
Other observables monitored were the total interparticle
ergy and the wall interaction energy.

The choice of system size was, as ever, a comprom
between minimizing finite-size effects and maximizing co
putational throughput. Tests showed the profiles to be larg
insensitive to the size of the wall area and hencep57 was
used, this being the largest computationally tractable s
consistent with the necessary choice of the slit widthd. The
latter must clearly be considerably larger than the film thi
nesses of interest in order to prevent the liquid film direc
interacting with the hard wall atz5D. In the results pre-
sented below, the typical slit width used wasd516, corre-
sponding to some 40 molecular diameters. For thin film
narrower slit of widthd58 was used.

B. Wetting behavior along a subcritical isotherm

Accurate knowledge of bulk phase behavior is an ess
tial prerequisite for detailed studies of near-coexistence w
ting properties. In the present model, the locus of the liqu
vapor coexistence curve and location of the critical end po
are already known to high precision from a previous Mo
Carlo simulation study@9,5#. The phase diagram in them-T
plane ~in standard Lennard-Jones reduced units@25#! is
shown in Fig. 9. The critical end point is located atTCEP
50.958(3), mCEP523.017(3)@9,5#. We note that although
the locus of the coexistence curve is known to five sign
cant figures, the position of the CEP along this tightly det
mined line is known only to three significant figures.

To determine the wetting properties at temperatures
low TCEP the number density profiler(z) was studied along
the isothermT50.9467 as coexistence was approached fr

FIG. 9. The phase diagram in them-T plane ~dimensionless
units! of the symmetrical binary Lennard-Jones fluid model d
scribed in the text. Also shown is the location of the critical e
point and the isotherm along which the wetting properties w
studied.
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the vapor side. To achieve this, the chemical potential w
incremented up to its coexistence valuemcx(T) in a sequence
of 6–10 steps of constant sizeDm50.0025. This procedure
was repeated for a number of different values of the w
fluid potential strengthew , allowing the influence of this
parameter on the wetting behavior to be ascertained. In
six values of the ew were studied (ew
51.0,1.7,1.75,2.0,3.0,4.0). We describe the wetting beha
for each in turn.

For ew51.0, Fig. 10 shows that although the film thick
ness grows very slightly as coexistence is approached
never exceed two molecular diameters. At no point in
profile does the density attain that of the liquid phaser
'0.6). The presence of a thin wetting layer right up to c
existence implies incomplete~partial! wetting.

Increasing the wall potential toew51.70@Fig. 11#, results
in considerably more structure near the wall compared
ew51.0, with clear density oscillations arising from
excluded-volume ‘‘packing effects’’@27#. The profile is
much more responsive to changes in the chemical pote
and reaches a thickness of 4–5 molecular diameters clos
coexistence.

For ew51.75, however, the situation changes quali
tively, as shown in Fig. 12. On increasing the chemical p

-

e

FIG. 10. Density profiles forew51.0e. Data are shown for
seven values ofm2mcx in the range@0,21.5#e.

FIG. 11. Density profiles forew51.7e. Data are shown for eigh
values ofm2mcx in the range@0,21.525#e.
1-9
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tential, a clear jump is observed in both the thickness of
film, and the value of its density. In the thick film, the de
sity of a significant portion of the film is that of the bul
liquid. This thin-thick jump constitutes a prewetting trans
tion, as previously observed in simulation studies of latt
gas models@26#, Lennard-Jones fluids@13,14,27,28# as well
as experimentally@29#.

As the wall potential is increased toew52.0 ~Fig. 13!, the
sharp prewetting transition is lost and instead the film thi
ness increases smoothly asm approaches its coexistenc
value. This suggests that here the system is above
prewetting critical point@26#.

On increasingew to 3.0, a new feature emerges@Fig.
14~a!#. As the chemical potential increases, the thickness
the film initially increases smoothly with increasingm. How-
ever, once the thickness reaches some 10 molecular d
eters, a large jump occurs to a thickness of about 15 mole
lar diameters. Concomitant with this jump is a demixing
the film as a whole, as seen in the order-parameter pro
Fig. 14~b!. The size of the jump in the layer thickness a
pears to reduce as the wall strength is increased toew54.0
~Fig. 15!, suggesting a weakening of the transition.

FIG. 12. Density profiles forew51.75e. Data are shown for six
values ofm2mcx in the range@20.025,21.5#e.

FIG. 13. Density profiles forew52.0e. Data are shown for eigh
values ofm2mcx in the range@20.025,21.6#e.
03120
e

e

-

he

f

m-
u-
f
le
-

IV. DISCUSSION

The Monte Carlo simulation results at subcritical tem
peratures provide evidence that the mean-field calculat
correctly identify the qualitative wetting behavior. The
show that depending on the fluid-wall interaction streng
ew , a number of different wetting scenarios occur as liqu

FIG. 14. ~a! Density profiles forew53.0e. Data are shown for
six values ofm2mcx in the range@20.025,21.55#e, and ~b! the
corresponding order parameter profilesn(z).

FIG. 15. Density profiles forew54.0e. Data are shown for eigh
values ofm2mcx in the range@20.025,21.6#e.
1-10
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WETTING OF A SYMMETRICAL BINARY FLUID . . . PHYSICAL REVIEW E 63 031201
vapor coexistence is approached from the vapor side.
small ew , only a very thin film builds up on the wall. Fo
intermediate values ofew , a first prewetting transition is
observed from a thin mixed film to a thick liquidlike mixe
layer. Further increasingew induces a second prewettin
transition between a mixed liquidlike layer and a thicker d
mixed film, the situation being very similar to that shown
Fig. 6. The abrupt, first-order character of this latter tran
tion appears to weaken on further increasingew , in accord
with the theoretical predictions.

FIG. 16. Some possible schematic wetting phase diagrams in
temperature-density plane.~a! Weakly attractive wall: Critical end
point TCEP of thel line is a critical wetting point, below which the
wall is not wetted by the liquid.~b! Intermediate attraction: Demix
ing induced first order wetting transition atT,TCEP with a prewet-
ting line that evolves into a second-order demixing line.~c! Strong
attraction: Complete wetting at coexistence everywhere, but
tached prewetting line or continuous demixing transitions off co
istence ~in films of finite thickness!. Hatched area indicates th
possibility of conventional wetting transitions at lower tempe
tures.
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We will now attempt to set our results within the conte
of the bulk phase diagram of the binary liquid. To this en
we discuss the possible wetting scenarios in the vicinity
the critical end pointTCEP. As previously argued in the In
troduction, for temperaturesT,TCEP sufficiently close to
TCEP the bulk correlation lengthj of the demixed liquid is
larger than the thicknessl * of a mixed liquid layer at the
wall. The state of order of the film thus depends strongly
the boundary conditions of the two interfaces confining
liquid layer. The nonselective liquid-vapor interface alwa
favors mixing due to the reduced number of interacti
neighbors in the interfacial region. The liquid-substrate int
face, on the other hand, can either favor mixing or demix
depending on the strength of the fluid-wall potential. Fo
weakly attractive wall potential, mixing is favored becau
the particle density at the wall is low and the presence of
wall reduces the number of interacting neighbors. Fo
strongly attractive wall, however, the high density at the w
can counteract the missing neighbor effect leading to
overall demixing tendency.

If the net effect favors mixing at the wall, a continuou
demixing of the layer as coexistence is approached can
excluded. A first-order transition involving a discontinuo
increase of the film thickness upon demixing is still conce
able. However, we have shown in Sec. II A, that~at the
mean-field level, at least! the demixed wetting film has a
higher free energy than the corresponding mixed film p
vided the correlation length of composition fluctuations
sufficiently large.

At walls that suppress demixing, the film is thus alwa
mixed close to the critical end point, and its thicknessl *
below the critical end point is finite. Hence the critical en
point is automatically a critical wetting point. The resultin
phase diagram is shown schematically in Fig. 16~a!. Note
that the wetting transition here is pinned by a bulk pha
transition, a situation somewhat reminiscent of triple-po
wetting @30,11#.

The situation changes if the substrate favors demixing
this situation, one component segregates to the surface o
film already slightly aboveTCEP and the order propagate
continuously into the bulk of the film atTCEP. The film
remains wet atTCEP. From the results of Sec. II C~in par-
ticular, Fig. 8!, one can deduce two possible scenarios. T
film may still exhibit a first-order wetting transition to a non
wet state at a temperature belowTCEP @~e.g., in Fig. 8! at
f051.14#. The discontinuous phase transition at liqui
vapor coexistence then spawns a prewetting line, wh
eventually switches into a second-order demixing line a
loops around the critical end point as suggested in Fig. 16~b!.
If the wall is strongly attractive@~e.g., atf051.27! in Fig.
8#, the wall wets at all temperatures, the prewetting line
taches from the coexistence line and is continued by seco
order demixing lines both at the high- and low-temperat
side as sketched in Fig. 16~c!.
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