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Wetting of a symmetrical binary fluid mixture on a wall
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We study the wetting behavior of a symmetrical binary fluid below the demixing temperature at a nonse-
lective attractive wall. Although it demixes in the bulk, a sufficiently thin liquid film remains mixed. On
approaching liquid vapor coexistence, however, the thickness of the liquid film increases and it may demix and
then wet the substrate. We show that the wetting properties are determined by an interplay of the two length
scales related to the density and the composition fluctuations. The problem is analyzed within the framework
of a generic two component Ginzburg-Landau functiofagpropriate for systems with short-ranged interac-
tions). This functional is minimized both numerically and analytically within a piecewise parabolic potential
approximation. A number of surface transitions are found, including first-order demixing and prewetting,
continuous demixing, a tricritical point connecting the two regimes, or a critical end point beyond which the
prewetting line separates a strongly and a weakly demixed film. Our results are supported by detailed Monte
Carlo simulations of a symmetrical binary Lennard-Jones fluid at an attractive wall.
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[. INTRODUCTION and film thickness are not limited to the critical point itself.
To illustrate this, it is instructive to consider the following
Phase transitions are well known to be influenced by geoGedankenexperiment. Let us take a symmetrical binary
metrical confinementl]. In practice, confinement is often fluid, i.e., a fluid in which particles of the same species have
imposed by rigid external constraints, for example, the surone strength of interaction, while interactions between dis-
faces of porous or artificially nanostructured media. How-similar species have another strength. As elucidated in Ref.
ever, it can also be an inherent feature of a system, as occurgl, it is possible to arrange for such a system to exhibit a
for a liquid wetting film bound to a solid substrate and in Second-order line of liquid-liquid demixing transitions termi-
equilibrium with its vapor{2]. In such a situation the liquid nating at a critical end poifCEP). In general a CEP occurs
is confined between the rigid substrate and the flexiblevhen a line of second-order phase transitions intersects and
liquid-vapor interface. is truncated by a first-order phase boundary delimiting a new
The effects of confinement are particularly pronounced imoncritical phase. In the symmetrical binary fluid mixture,
the region of critical points. Under such conditions the systhe phase diagram is spanned by three thermodynamic fields
tem exhibits strong order parameter fluctuations, the correldT, «, h), whereT is the temperaturey is a chemical poten-
tion length of which may become comparable with the lineartial, andh is an ordering field coupling to the relative con-
dimension of the confined system. When this occurs the efcentrations of the two fluid components. In this paper we
fects of confinement are felt not just near the confining surconsider the case=0, in which two demixed liquid phases
faces, but propagate throughout the sys{éin coexist. By tuningTl and u, one finds a critical demixingor
Critical fluctuation is relevant to the properties of liquid “\ line”), where the separate liquid phases merge into a
wetting films if the liquid in question possesses an additionabingle mixed liquid phase. This line meets the first-order
internal degree of freedom. Then the state of the liquid idine of liquid-gas transitiong:,(T) at the critical end point
described not only by its number density, but by an addi{Te.ue), see Fig. a. For T<T,, the phase boundary
tional parameter measuring the degree of internal order. Exx,(T) constitutes a triple line along which the demixed lig-
amples are binary liquids, where the additional order paramuid phases coexist with the gas phase, while fbr
eter is the relative concentration of species, and ferrofluids> T, u,(T) defines the region where the mixed liquid and
where it is the magnetization. In such systems the geometrthe gas phase coexist. Precisely at the critical end point the
cal constraint(i.e., the film thicknegscan itself depend on critical liquid mixture coexists with the gas phase. The phase
the state of order in the liquid film. For example, simulationdiagram in the density temperature plane is shown in Fig.
and experiment have recently shown that critical concentrai(b).
tion fluctuations can change the equilibrium thickness of a Suppose now that the fluid is placed in contact with a
wetting layer of a binary liqguid—the so-called critical Ca- nonselective attractive substrdteall) acting equally on both
simir effect[4-6]. species. If the wall is sufficiently attractive, complete wetting
It transpires, however, that the interesting consequencezccurs at and above the critical end point temperaligg
of interplay between the degree of order in the wetting layeias liquid-vapor coexistence is approached from the vapor
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the correlation lengtt¥ diverges much faster, likéo(Tcgp
—T) 7 and will thus always exceeld. sufficiently close to
Tcep.

The second flaw in our argument is its implicit assump-
tion that the composition or order parameter profile is con-
fined in an effectively steplike density profile, i.e., that the
interfacial width between the liquid and the vapor is much
smaller than the correlation length of composition fluctua-
tions. Although this is true in the region of the critical end
point, for temperature sufficiently beloWegpthe correlation
lengths of density and composition fluctuations can be com-
parable and the interplay between the two subtle.

In the present paper, we deploy a mean-field calculation
and Monte Carlo simulation to elucidate the range of pos-
sible wetting behavior of a symmetrical binary fluid mixture
at a nonselective attractive wall for temperatures below
Tcep- For the sake of simplicity, we have chosen to ignore
long-range dispersion forces in the analytical calculations,
instead taking the interactions to be short ranged. This allows
us to base our study on a generic Ginzburg-Landau model,
which we solve numerically and analytically within a square
gradient approximation. The latter leads to the construction
of a film free energyeffective interface potentiphighlight-
ing the role of the different length scales involved in the
problem. We show that the competition of length scales re-
sults in wetting phase behavior considerably more complex
than has hitherto been appreciated. The analytical results are
rycompared with(and supported bydetailed Monte Carlo

simulations of a binary Lennard-Jones fluid in a semi-infinite

in the density-temperature plane. Dashed line indicates critical degeometry, interacting with a nonselective attractive substrate
mixing transitions, full curve the first-order liquid-vapor coexist- yvia dispersion forces.

ence line or envelope, respectively.

side. But what happens far<T.gp? Far from coexistence,
the wetting film is sufficiently thin that demixing will cer-

With regard to previous related work, the sole discussion
of wetting of symmetrical binary fluids at a nonselective wall
(of which we are awanpeis that of Dietrich and Schickl1]
who considered them in a sharp kink approximation treat-

tainly be suppressed. On approaching the coexistence curveent of binary fluids having long-ranged interactions. Most
however, the film thickness grows and it is tempting to argueother work on the wetting properties of binary fluids has
that it eventually exceeds the correlation length of composifocused on the case of a selective subst(édgoring one
tion fluctuations, whereupon the film spontaneously demixescomponent [10-14. Although such models correspond
Notwithstanding the appealing simplicity of this argu- more closely than ours to experimental conditi¢hg,15,
ment, it turns out to contain two flaws that render the actuathey lack the aspect of simultaneous demixing ordering and
situation rather more complex. First, the thickness of thewetting, which is of interest to us here. It should be stressed,
mixedwetting film will not increase beyond all limits below however, that realizations of fluids having symmetrical inter-

the critical end poinfTcgp. This is because a hypothetical nal degrees of freedom do in fact exist, notably in the form
mixed bulk liquid would not coexist with the vapor phase atof ferrofluids[16], so our model is of more than purely the-

the same chemical potential, as a demixed liquid, but
rather at a chemical potential, which is shifted by

P — 0% (Tegp—T)2 7 (1.1

towards the liquid side in thee—T plane[8,9]. Since the
thickness of the mixed film grows as pa(—w) [2,10], it is
bounded from above by

LeoeIn(pe — o) <IN(Tegp—T). 1.2

The maximum thickneds. of a hypothetical mixed film thus

diverges logarithmically on approachifigcgp. In contrast,

oretical interest.

More general studies of wetting in systems with more
than one order parameter and associated length scales have
been discussed by Hau@#7], who pointed out that wetting
exponents may become nonuniversal even on the mean-field
level due to the competition of length scales. Later studies
have often focused on this nonuniversality, e.g., in the con-
text of wetting phenomena in superconductfls], alloys
[19,20, and related system&1].

The present paper is organized as follows. In Sec. Il we
introduce our Ginzburg-Landau free-energy functional and
obtain its wetting behavior in the limits of infinite and van-
ishing order-parameter stiffness. At intermediate values of
the stiffness parameter the wetting behavior is found firstly
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via an analytical minimization of the functional within a critical end-point temperature. Abok.ep, liquid-vapor co-

piecewise parabolic potential approximatit®ec. 1B, and  existence is encountered at=0, and belowfgp, at
then(in Sec. 11 Q via a numerical minimization of the free-

energy functional to obtain the density order parameter pro- 6°
files. In Sec. IIl A we report the results of grand canonical Mc:m- (2.9
Monte Carlo studies of a symmetrical binary Lennard-Jones
fluid at an attractive structureless wall. The density andrhe coexisting liquid and gas phases are characterized by the
order-parameter profiles with respect to the wall are obtaine@rder parameteréo linear order inw)
along a subcritical isotherm for a number of different wall-
fluid potential strengths. Finally we compare and discuss the m*=0, o¢*=—1—ul2 (2.6)
mean-field and simulation results in Sec. IV.
in the gas phase, and

Il. GINZBURG-LANDAU THEORY

L O ku KoK

m=12 $TT3t3

_ _ . mt? (2.7
Our theoretical studies are based on a generic Ginzburg-

Landau functional for a system with two order parameters o ) o
¢(F,z) andm(r,z): in the liquid phase. These expressions are also valid in the

regime where the liquid or gas phase are metastable.

(= (g . Y 5 Minimizing the functional2.1) yields the Euler Lagrange
}‘:f dffo dz) 5(V#)"+ 5 (Vm)*+f(m, $) equations
d’¢  of d’m  of
+f dify(m, ¢)|,—o (2.1) 9422" 96" Yd2Z am’ (2.8
with the bulk free-energy density with the boundary conditions
_a¢2b¢4am2bm4 2 d_qb:a_fs d_m:ﬂ_fs
f(m,g)=— = ¢*+ - o' - m*+ " m+ ud—km’¢ 9az| Tap Vdz| Tom (2.9
(2.2
We wish to study a situation where the mixed liquich (
and the bare surface free energy at the wall =0) wets the wall aju=0 (coexistence between vapor and
c c mixed liquid). To ensure this under all circumstances, we
fo(m, )= 7¢¢2+H4,¢+ Tmmz_ (2.3  chooseH ,=—¢oC, with ¢o> ¢% and take the limitC,

—oo, Which is equivalent to constraining the surface density

o ] at the fixed valuep(0)= ¢,. The surface coupling,, is
The z axis is taken to be perpendicular to the wall aftf  aken to be positive. It accounts for weakening of the demix-
integrates over the remaining spatial dimensions. In our casgyg tendency at the surface due to the reduced number of
the quantitymis related to the difference between the partialinteracting neighbors.
densities of the two componentsy(p—pg), andé to the One possible solution of the Euler-Lagrange equations de-
total density,=(p—po), where the reference density is  scribes a mixed film at a wall. In this cage(z)=0 every-
chosen in the liquid-vapor coexistence region such the cubignere and one is left with one order parameteonly. The
term proportional to g— po)® in Eq. (2.2 vanishes. Below bulk value of ¢ in the metastable mixed phase ¢ =1
the liquid-vapor critical point, it is convenient to set the units — ul2. The standard way of solving the probl¢&] shall be

of ¢, m, Fand of the length such thit,=b,=a,=9=1,  gyetched briefly for future reference. One begins by identi-
and to defined=a,,— 1. The bulk free-energy density then fying the integration constant

takes the form

dqﬁ)z

1 1 7] 1 2D ¢ (M =0 21

f(m,¢):—§¢2+z¢4—zm2+zm4 2\ dz (¢)+1(4=")=0, (2.10
—po+ k(1— p)m2. (2.4) which gives an expression fdip/dz as a function okp. The

surface free energy can then be expressed as an integral over

The bulk properties of this model have been discussed earligf

[7]. A A-line 6,(w) of continuous transitions separates the 4

mixed fluid from the demixed fluid at large negatiue cor- (0) _ (b0

responding to large densitigs As long ask<1, it is termi- Fex ¢(_°)d¢\/2[f(¢) He=0] (210
nated by the onset of liquid-vapor coexistence at a critical

end point @cgr=0, mcep=0). The parameter is field like  and the excess densip(Q=1/2[5dZ ¢(z)— V] at the
and @ is temperaturelikefo(T—Tcegp, WhereTegp is the  surface can be calculatedh
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_ 4(0) I I
¢£)CZE ¢ dp(p—¢) . (212 0 1Y
2402 1(¢) ()]
As long as|f(¢—f(¢-)|<(8— ¢ )" (¢, which
is true for u<<2, the main contribution to this integral stems
from ¢ values aroundp?). The numerator in the integrand e 7
can then be expanded aroum(f). Carrying this to second o 1

order and assuming <(¢o— ¢'’), one obtains FIG. 2. Schematic sketch of density and order parameter profiles
in the limit y/m’_;zﬁoo. See text for more explanation.

1 2
0) /2 (0)
Pexc \[2|n(¢(f>_¢o)’ (Fo<¢y?), (213 in region (1), it switches from¢,(m,) to ¢_(m,). The
other two regions(Il) and (IV), are much wider; the order
1 4(¢0_¢<+°>) parametemm(z) varies slowly and¢(z) adjusts locally to
P Eln ————|, ($>0). (214  m(2), such thath= ¢ (m) in region(ll) and b= ¢_(m) in
region(1V).
Above the bulk demixing transition, the mixed film thus wets ~ T0 make the argument more quantitative, we specify the
the wall at coexistencel{— 0) for ¢> ¢, and maintains ~actual subdivision of the excess free energy of €d),

a finite thickness forg,< ¢>). We will choose o> ¢'? Fom (Mo, o)+ Fit Fy+ Fu+ Fry (216
hereafter. From EQq(2.11), one calculates the surface free
energy to leading order ip and (¢o— d)(f)) with
s [1/d¢)\?
Fggg:¥+%(¢o—¢<f>>2. (2.19 ﬁ=JOdZ E(d_(: +f(mo,¢)—f[mo,¢+(mo)]}
Below the bulk demixing transitionw=u.>0 at coexist- ! m\?
ence and the thickness of the mixed film remains finite under Fu= fodz 2 7(5 " f[m,¢+(m)]},
all circumstances.
In the following, we shall first analyze the wetting behav- [ 1({d¢p)\?
ior for the limiting cases where the order parameter varies on Fiii = f dz5 (E +f(my, ¢)— f[m2,¢+(m2)]}
very short length scalesy(m*?—0) and on long length -0
scales §/m*2—o) compared to the density. Then we will l+6 [1(d¢p)?
discuss the general case of intermedigtdirst analytically +f| dz 5(5 +f(m2,¢)—f[m2,¢_(m2)]},
in an approximation where the potenti@l4) is replaced by
a piecewise quadratic potential, and then numerically with L T1 /dm)\?2
the full potential(2.4). Fiv= Jodz EV(E +f[m,¢(m)]}

A. Limiting cases The calculation for the regiond), (I1l), and (IV) can pro-

We consider first the wetting behavior am*?—0). In  ceed in an analogous way as sketched earlier for the mixed
this case,m adapts locally tog, and the order parameter film: The profiles of¢(z) in regions(l), (Ill), and ofm(z) in
profile m(z) can be written asm[¢(z)] with m(¢)=6  region(IV) are monotonic and the integration constpeft
+2k(¢p—1) for ¢p<1—0/2« and m(¢)=0 otherwise. EQ. (2.10] is known (zerg. One obtains to leading order in
Hence we are left with the effective one order parameteg and[ ¢o— ¢ (mMp)]
problem of calculating the density profi&(z) in the slightly
altered potentiaf (¢) = f[m(¢),¢]. Sincef(¢) is a smooth F,= \E[d’o— b (M) ]2+, (2.17
function with two minima, one can proceed as sketched 2
above for the mixed film, with the analogous result: The
demixed film wets the wall a> ¢* . . _ - "2 +O[(u— km2)?], (2.18

The analysis of the opposite caseg/If1}.“— o), is some- 3
what more involved. Hereb adapts locally tom; however,
the bulk equatiof/d¢p= ¢°— ¢+ u— km?=0 has two so- m5
lutions ¢ .. (m). One conveniently separates the profiles into Fiv=" Vy(4xtkp—0. (2.19
four parts(l)—(IV) as indicated in Fig. 2. The regiol and
(Ill') are narrow slabs wheré(z) varies rapidly andn can  In the region(ll), the integration constant is unknown,
be approximated by a constani=m, at the surfacél) and 1 dm2
m, at the interface(lll). In region (I), ¢ drops from it's Lopame _
surface valuep, to the local equilibrium valueb  (mg), and 2 7( dz) fim,é.(m]=p, (220

031201-4



WETTING OF A SYMMETRICAL BINARY FLUID ...

with p>0 if the profile of m(z) is monotonic, ancp<O0 if

PHYSICAL REVIEW E 63 031201

first term in Eq.(2.26 dominates and the free energy of the

m(z) is nonmonotonic, like in Fig. 2. A connection between demixed film exceeds that of the mixed film: The film re-

p and the widthl of the film can be established using
=f22dm/|dm/dz| in the first case, and

I_J-mmax dm +J'mma>< dm
=)oy JdmdZ ")y, [dmidg

in the second case, wherem,,, solves p

mains mixed and dewets accordingly.

The second case is more subtle. Here, the second term
dominates, and the free energy of the mixed film may be less
favorable, depending on the ratio &, and (pg— ¢%).

Note that the density enhancement at the surfa@&,( ¢,
—¢%), acts as an additional surface coupling, which op-
poses the effect of,,. The paramete€,, accounts for the

= — f[Myae®s (Ma)]. Next we expand the function direct reduction of interacting neighbors right at the surface.

f[m, ¢, (m)] about it's minimumm? , leading to

2 4 m 2 1
fim ¢ (M]~1-xHm | ——1] — 7| (2.2D
+
One deduces the characteristic length scale,
=\ 22
“ Vo) mt (2.22

which grows very large in the limit/m*?—o. The result
for F,, can therefore be expanded in powerseot’*. After
adding up all contributions regiori§)—(IV) and minimizing

It is counterbalanced by the fact that the dengityclose to
the surface is higher than in the bulk. If the latter effect
dominates, the film demixes at the surface evemiér—0

or T—Teep.

B. Analytical results in a piecewise parabolic potential

At fixed m* , we have seen that the demixed film wets the
substrate in the limity—0, where the order parameter
varies much faster than the density and dewets aty
—oo, where the density varies much faster than the order
parameter. Now we consider intermediate valueg,afhere
the two characteristic length scales become comparable. Far
from the critical end point, this is the usual case in a binary

with respect tomy, the total excess free energy of the de'quuid, since the interaction ranges responsible for liquid-gas

mixed film takes the fornt .= Fs (Mg, do) + Finet V(1)
with the surface contribution

1
Fsur=fs(Mg, o) + \[E[d’o_ ¢+ (my)]?

+ 8\ u(1—mg/m*)2, (2.23
the interface contribution
2v2
Fint:T+8)\MC1 (2.29

and a surface interface interaction term
V(1) =2(u— p)l =32 ue(1—my/m¥ e

+ 16\ u[A—(1—mg/m*)?Ble 2", (2.25
whereB=[\\y[k—m**(1—«?)]/4] %, andA=—3 or A
=1, depending on whether or not the profit€z) is mono-
tonic.

The result can now be discussed.mg<m?* , the leading
terme'/N

mixed film AF =F.—F) is up to third order irm*

AF= %[W(l—KZ)[H(l—mo/n‘l’i)z]mi3

+{Cn/V2— k[ po— b (Mg) IIm3]. (2.26

The limit ’}//miz—)oo can be taken in two ways: either

of the potentialV(l) is attractive, and wetting is
not possible. Amy>m? , an infinitely thick demixed film is
metastable at coexistence. It's free-energy difference to the

separation and demixing are comparable.

In order to carry further the analytical analysis, we ap-
proximate the free-energy density¢,m) (2.4) by a piece-
wise quadratic form

b—¢

o (2.27)

+ou,

1 - .
f(¢,m)=§(¢—¢,m—r”n)f(

with three pieces corresponding to the gas phase and the two

liquid phases, separated by the lines
bsedM) = — k(M*+m*2—[m/*)+7/2 (228

andm=0 at ¢> ¢sf0). Hereu=u—pu., o=—1 for ¢

> ¢psedm) (gas phasg o=+1 for ¢<dsfm) (liquid

phasel and the parabolae are adjusted to the leading terms

in the expansion of the function&2.4) about its minima,

b _<_1 s 2 0
m/ |0 ) =lo a) 229
for ¢<¢se{m) (gas phase and
(z,;)_ 1+Km:2/z) | 2 :sz:)
moLoE=mi T F2kmt 2m*? )
(2.30

for ¢> ¢se{m) (liquid phases where the upper sign holds
for m>0, the lower form<0. The choice(2.28 of ¢
ensures that the potentib{m, ¢) is continuous.

In such a potential, profiles of demixed films correspond
to paths in the ¢,m) space, which can be separated into
three parts:(i) moving in one of the liquid regions from

—oo at fixedm? , orm% —0 at fixedy. In the first case the (¢g,mg) to (¢1,m=0); (ii) following the edge ;n=0) be-
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tween the two liquid regions fromdf;,0) to [ ¢sd0),0];
(iii) moving in the gas region from¢gf0),0] to (-1, 0.

On principle, a direct transition frorfi) to (iii) is conceiv-
able. For the parameteis, of interest, however, such pro-
files turn out to be energetically less favorable than the pro
files that have an intermediaté). Profiles of mixed films
have two partgii) and(iii) only. We shall denotg; =1, 1),
andl g, the length of the slab spent in regio6g, (i), or
(iii ), respectively.

At given slab length and boundary conditions, the free

energy in each of the slabs can be calculated exactly usin

SR

K

1
2

du
dz

u
A2

_1 NP2 hI
=2 [u(0)+u(l)]tan o8

|
+[u(0)—u(|)]zcoth§].

(2.31

The calculation is straightforward in the regimép and
(iii). In regime(i), the free-energy functional has to be di-
agonalized first:

2 2 2

- _1JId dv +v N dw +W
072 )99 \az) T2t |laz) T2
with
miZ \/(mjcrz 2 12
AN 2=1+ T + 4k2-2)+1,
1,2 Y Y Y ( )
(2.32
v ) B 1 e~ 512 e6/2 gb_&
Wi Jelre?| e —e P/ Jy(m-fm)’
where we have defined
P 270 23
_E n m . ( . 3)

The parameteb or alternativelyy/m*? determines the wet-
ting behavior. Figure 3 shows the two length scalgsand

PHYSICAL REVIEW E63 031201

\, as a function ofy/m*2. The length); is always larger
than\,. At y/m*?>1 or §>0, it characterizes the spatial
variations of m(z) and grows linearly withy/m*?; at
ylm*2<1 or §<0, it characterizes the variations @f(2)

and remains largely independent ofm*2. These are the
limiting regimes discussed in the previous subsection. At
y/mizwl or 6~0, bothA; and A, are related to linear
combinations of(z) andm(z) [22].

The further calculation proceeds as follows: The free en-

ergy in regime(iii) is given by
Fiy=v2I2{1+[ dsed0) + 117} (2.39
In the region(ii), the result for the free energy is expanded in
powers ofe”"?'() up to the second order and minimized
with respect td ;) . The free energy calculated in regiGn
is expanded up to second order in powergof*t and up to
first order ine”"*2, wherel=l,. The three contributions
are then added up, and the sum is minimized with respect to
¢4, andmg at given surface couplinG,,. The solution has to
be compared with the free energy of a mixed film, which is
calculated analogously.

We only report the result for the cas&,=0 here. The
expressions obtained for arbitra@y, are more complicated,
but qualitatively similar. Without loss of generality, we can
assumem>0 in the demixed film. As long amy>0, the
surface order parameten, and the free-energy difference

gAF, between the mixed and demixed film, can then be ex-

panded as

Vymo= Vym* + 1o+ 1ye 7 Mt e Mot e 2

(2.39
AF(I ) = AF(”)‘I‘ 7'0+ Tze_”)\l+ Tze_ll)\2+ T3e_2|/)\l.

Using the abbreviations

e’+e?
NN o

AN
e oN +e N,

Ko= and K. =

the coefficients can be written as
oy -1y -1 o
=Ny "= A HIK_(do— @),
1= —2KoK K_e*?\ym*)
13= —2KoK2 (1+8K,e N (po— ), (2.36
70=Ko[K 4 ymi2+K_(do— )21,
T1,0= i2K0K+K7/)\2,1\/;mi(¢o_:75),
7'3:KoK,Kieﬁ(eiél)\z_eb‘/)\l)/)\z’ymjz
+KoKZe ™ (1+8K e /N )Ny bo— )2,
(2.37

and withh=m**(1—«?) — 271, p=¢pg— P+ km*?,
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“ - lJ‘COCX

FIG. 4. Coefficientsr; of interfacial potential vsy/m*?2 for «

=0.5,d,=1.5, and surface couplinG,,=0 (thick lines andC,, FIG. 5. Phase diagram in the— ¢, plane. Parameters ave

=0.5, 6=0.1, andy=1., C,=0.2. Solid line indicates first-order

=0.2 (thin fines. transition, dashed line second-order transition.
1, h dp? ]-‘—fxd 1 " (dm)2 do 2+f
AF(ii)__ﬁp Y 1+In——/. (2.39 =/, 993 Nas) || az [M(¢),d]

When taking the limitsS— *0, one recovers qualitatively

%0 dm\? R
:J dg\/ L1+ 7| | ViIm(¢),4]—-f(0.¢*),
** d¢
[23] the behavior discussed in the previous section.

terface potential for the demixed film. The parameterior exploited as usual. Minimization with respect to the function
a choice ofy (dy=1.5) and two values o€, Cp=0 m(¢) leads to the Euler-Lagrange equation

according to Eq(2.37 andC,,=0.02, are shown in Fig. 4. 42m dm\21/ of dm of

One finds thatr; is always positive, is always negative, 2yf(m, ) —5=|1+7y _) (__ Y _)
and 3 changes sign from positive to negative a&njz do do om “d¢ i
increases. The leading term of the potenfél) is thus posi- (2.39

tive, and one expects a first-order wetting transition and a

prewetting line. On the other hand, the expansi@85 are  which we have solved using the Verlet algorithm.

only valid as long as the surface order paramatgiis posi- Some results are shown in Figs. 5, 6, 7, and 8. As antici-
tive. According to Eq.(2.36), the coefficients; of the ex-  pated in the Sec. II B, we find a first-order wetting transition,
pansion formy(l) are negative except for the zeroth-ordera discontinuous prewetting line, and a continuous demixing
term «o. Hencem, decreases with film thickness and may line. At surface coupling,>0, the demixing line joins the
vanish at some thickneds. In this case, the film mixes Prewetting line in a surface critical end poiffig. 5. The
continuously atl., and the prewetting line turns into a prewetting line separates a demixed thick film from a mixed

second-order demixing line sufficiently far from coexistence thin film (see profiles in Fig. Bbefore reaching the critical
end point, then two demixed films of different thickness, and

C. Numerical solution 1.0

The analytical results of the Sec. 1l B provided insight into o(z)
the competition of length scales in the binary fluid and the 0.0
wetting scenarios, which can be expected on a wall as a
result. However, a reliable calculation of actual phase dia-

-1.0

grams, including the details of the prewetting line, is not 04— '
possible on the basis of the expansi@mB5. We have thus m(z) 8:2
supplemented the analytical work by a numerical minimiza- 0.1
tion of the functional(2.2) in the u— ¢ plane for selected 0.0 : 4 by
sets of parameterg andC,,. 0 5 10 15 20
The problem is simplified considerably due to the fact that z
#(z) is a monotonic function of, i.e., m(z) can be ex- FIG. 6. Density and order-parameter profiles for the coexisting
pressed as a functian(¢). The bulk free-energy functional mixed and demixed film at the point in the— ¢, plane indicated
in Eq. (2.1) can thus be rewritten as by the arrows in Fig. 6.
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1.30 - ‘ ing transition is now shifted to lower surface densitigs.
Demixed | = oe--mT Furthermore, the length of the prewetting line shrinks instead
195 | film "Y =1 of growing.
1.20 IIl. MONTE CARLO SIMULATIONS
, y=05 In this section we describe Monte Carlo simulation stud-
118 _ ies of the subcritical wetting behavior of a symmetrical bi-
_________________ nary fluid at a structureless wall.
1.10 / ; :
Mixed film A. Model and simulation details
1.05 . ‘ The system we have studied is a symmetrical binary fluid,
0.0000 0.0005 0.0010 0.0015 having interparticle interactions of the Lennard-Joiied)
[ Sl S form:

FIG. 7. Phase diagrams in the— ¢, plane for differenty with
#=0.1, surface coupling,,=0, and parameters as in Fig. 6 oth- U(rij):4€ij
erwise. Solid lines indicate first-order transition, dashed lines
second-order transitions.

(3.9

-3
rij rij) |
We made the following choice of model parameters;

finally vanishes in a critical point. On decreasing the surface” 922~ 012= 0 =1, €11=€x=¢; and €1,=0.7¢, i.e., inter-
coupling C,,, the critical end point and the critical point actions between §|m|Iar species are treated |den_t|cally, put
move closer to each other, until they merge in a surfacdhose between unlike species are weakened. The interparticle

potential was truncated at a distance Rf=2.50 and no
long-range correction or potential shift was applied.

The fluid was confined within a cuboidal simulation cell
having dimension®, X P, XD, in thex, y, andz coordinate
directions, respectively, witlP,=P,=P. The simulation
cell was divided into cubic subcel(sf size the cutofiR;) in

tricritical point.

Figure 7 shows two cases of phase diagrams indhe
— u plane forC,,=0 and two differenty at fixed 6, i.e., at
fixed bulk order parametem? . With increasingy, the
prewetting line shifts towards largef, and extends deeper

into the off-coexistence region. Ag— o, it moves to S g ) ) !
9 » %o order to aid identification of particle interactions. ThBs

—o, the film remains mixed and thin at all finitgy. At~ — - : . :
v—0, on the other hand, the line becomes flat, approaches PR; andD=dR;, with p andd both integers. To approxi-

#* . and the tricritical point where it turns into a second- mate a semi-infinite geometry, periodic boundary conditions

order line moves tou.— The numerical results thus were applied in the andy directions, while hard walls were
) M e applied in the unique direction az=0 andz=D. The hard
agree with the conclusions from Sec. Il A.

wall at z=0 was made attractive, using a potential designed

Figure 8 dt_amonstrates what happ_en_s if instead of maklngo mimic the long-ranged dispersion forces between the wall
v larger, one increases the characteristic length scale of order

parameter fluctuations by decreasifig.e., approaching the and the fluid[24]
critical end point(reducingm?). Far from liquid-vapor co-

9 3
existence, the transition line still moves towards larggt V(2)=e i(ﬂ) _(ﬂ 3.2
However, the effect reverses close to coexistence, the demix- W15\ z z '
1.35 — R : Herez measures the perpendicular distance from the wgll,
Def‘.‘;"‘ed e is a “well depth” controlling the interaction strength, and
1.30 o -9 =0.05 we seta,,= 1. No cutoff was employed and the wall poten-

____________ tial was made to actquallyon both particle species.
§ Monte Carlo simulations of this system were performed
using aMETROPOLIS algorithm within the grand canonical
(m,V,T) ensembld25]. Three types of Monte Carlo moves
were employed(1) particle displacement$2) particle inser-
tions and deletions(3) particle identity swaps: +2 or 2
—1. To maintain the symmetry of the model, the chemical
1.10 L. s T potentialsp, and u, of the two components were set equal
0.0000 °'°°°5_ 0.0010 0.0015 at all times. Thus only one free parameters wi= wo,
W= B, couples to the overall number densjiy=(N;+N,)/V. The
FIG. 8. Phase diagrams in the— ¢, plane for differents with other variables used to explore the wetting phase diagram

y=1, surface couplin@,,=0, and parameters as in Fig. 6 other- were the reduced well dept/kgT and the reduced wall

wise. Solid lines indicate first-order transition, dashed lines secondpotential €,,/kgT. During the simulations, the observables
order transitions. monitored were the total particle density profile

125 |
)

120 ¢
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=21 T - . 03
28 Mixed
29t 02t
1 ~~~
N
=30 t 5
. Df:ml.xed Gas | oq L
qumd Wetting
_32 Isotherm
-33 : : : 0 . : :
0.88 0.92 0.96 1.00 1.04 0 5 10 15 20
T z/C
FIG. 9. The phase diagram in the-T plane (dimensionless FIG. 10. Density profiles fore,,=1.0e. Data are shown for

units) of the symmetrical binary Lennard-Jones fluid model de-seven values oft— u.y in the rangg 0,— 1.5]e.
scribed in the text. Also shown is the location of the critical end
point and the isotherm along which the wetting properties wereghe vapor side. To achieve this, the chemical potential was
studied. incremented up to its coexistence vajug(T) in a sequence
of 6—10 steps of constant sizeuw=0.0025. This procedure
p(2)=[N1(2)+N,(2)]/P?, (3.3 was repeated for a number of different values of the wall-
fluid potential strengthe,,, allowing the influence of this
the number difference order parameter profile, parameter on the wetting behavior to be ascertained. In all,
six values of the ¢, were studied ¢,
n(z)=[Ny(z)— Ny(z)]/P>?. (3.9 =1.0,1.7,1.75,2.0,3.0,4.0). We describe the wetting behavior
for each in turn.
These profiles was accumulated in the form of a histogram. For ¢,=1.0, Fig. 10 shows that although the film thick-
Other observables monitored were the total interparticle enness grows very slightly as coexistence is approached, it
ergy and the wall interaction energy. never exceed two molecular diameters. At no point in the
The choice of system size was, as ever, a compromisgrofile does the density attain that of the liquid phage (
between minimizing finite-size effects and maximizing com-~0.6). The presence of a thin wetting layer right up to co-
putational throughput. Tests showed the profiles to be largelgxistence implies incompletgartia) wetting.
insensitive to the size of the wall area and hepee7 was Increasing the wall potential tg, = 1.70[Fig. 11], results
used, this being the largest computationally tractable sizén considerably more structure near the wall compared to
consistent with the necessary choice of the slit widitfhe  ¢,=1.0, with clear density oscillations arising from
latter must clearly be considerably larger than the film thick-excluded-volume “packing effects’[27]. The profile is
nesses of interest in order to prevent the liquid film directlymuch more responsive to changes in the chemical potential

interacting with the hard wall at=D. In the results pre- and reaches a thickness of 4—5 molecular diameters close to
sented below, the typical slit width used was 16, corre-  coexistence.

sponding to some 40 molecular diameters. For thin films a For ¢,=1.75, however, the situation changes qualita-

narrower slit of widthd=8 was used. tively, as shown in Fig. 12. On increasing the chemical po-
B. Wetting behavior along a subcritical isotherm !
Accurate knowledge of bulk phase behavior is an essen-
tial prerequisite for detailed studies of near-coexistence wet- 08 ¢
ting properties. In the present model, the locus of the liquid-
vapor coexistence curve and location of the critical end point 06
are already known to high precision from a previous Monte %
Carlo simulation study9,5]. The phase diagram in the-T 04
plane (in standard Lennard-Jones reduced uf@$]) is
shown in Fig. 9. The critical end point is located Btgp
=0.9583), pcer= —3.017(3)[9,5]. We note that although 021
the locus of the coexistence curve is known to five signifi- —
cant figures, the position of the CEP along this tightly deter- 0 o 5 1'0 1'5 20

mined line is known only to three significant figures.
To determine the wetting properties at temperatures be-

low Tcgpthe number density profile(z) was studied along FIG. 11. Density profiles foe, = 1.7¢. Data are shown for eight
the isotherml'=0.9467 as coexistence was approached fronvalues ofu— uy in the rangeg 0,— 1.525e.

z/c
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1.5 . : .
@) 5,
1.0 }
— 20t
o)
< <
N a
05 f T .
0.0 . . :
0 5 10 15 20 0.0 . : :
2/ 0 5 10 15 20
z/c
FIG. 12. Density profiles fog,,=1.75%. Data are shown for six
values ofu— ey in the range —0.025- 1.5]e. (b) i
tential, a clear jump is observed in both the thickness of the
film, and the value of its density. In the thick film, the den-
sity of a significant portion of the film is that of the bulk _ 04
liquid. This thin-thick jump constitutes a prewetting transi- \;«_
tion, as previously observed in simulation studies of lattice N
gas model$26], Lennard-Jones fluidsl3,14,27,28 as well = =
as experimentally29]. :
As the wall potential is increased &,= 2.0 (Fig. 13, the
sharp prewetting transition is lost and instead the film thick-
ness increases smoothly as approaches its coexistence 0 i : i
value. This suggests that here the system is above the 0 5 10 15 20
prewetting critical poin{26]. /o

On |ncreaS|ngeW_to 3.0, a_ne_vv feature emergéﬁlg. FIG. 14. (a) Density profiles fore,,= 3.0e. Data are shown for
14(a)]. As the chemical potential increases, the thickness oLy values Of it — gy in the range —0.025— 1.58]e, and (b) the

the film initially inc_reases smoothly with increasipg How- ~ corresponding order parameter profieg).

ever, once the thickness reaches some 10 molecular diam-

eters, a large jump occurs to gthickngss of_about 15 r_nolecu— IV. DISCUSSION

lar diameters. Concomitant with this jump is a demixing of ) ) N

the film as a whole, as seen in the order-parameter profile The Monte Carlo simulation results at subcritical tem-
Fig. 14b). The size of the jump in the layer thickness ap- peratures provide evidence that the mean-field calculations
pears to reduce as the wall strength is increasesl, to4.0 correctly identify the qualitative wetting behavior. They

(Fig. 15, suggesting a weakening of the transition show that depending on the fluid-wall interaction strength
e ' €,,» a number of different wetting scenarios occur as liquid-

1.2 - T ' 3.0
1 -
08 1 20 |
S S
= 0.6 I E
0.4 10 ¢
02
CIs i
0 1 1 L
0 5 10 15 20 09

FIG. 13. Density profiles foe,,=2.0e. Data are shown for eight FIG. 15. Density profiles foe,,=4.0e. Data are shown for eight
values ofu — u¢, in the rangd —0.025-1.6]e. values ofu— u, in the rangd —0.025,-1.6]e.
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P We will now attempt to set our results within the context

2 ) of the bulk phase diagram of the binary liquid. To this end,

ey U i Hine | we discuss the possible wetting scenarios in the vicinity of
2 | gt 2P e the critical end poinfT cgp. As previously argued in the In-
8| wetting jRemixediind. | troduction, for temperature$ <Tcgp sufficiently close to
§ Tcep the bulk correlation lengtly of the demixed liquid is
— larger than the thickneds, of a mixed liquid layer at the

wall. The state of order of the film thus depends strongly on

the boundary conditions of the two interfaces confining the
liquid layer. The nonselective liquid-vapor interface always
favors mixing due to the reduced number of interacting
neighbors in the interfacial region. The liquid-substrate inter-
face, on the other hand, can either favor mixing or demixing
R R depending on the strength of the fluid-wall potential. For a
ot 7 AR weakly attractive wall potential, mixing is favored because
—— i Sl the particle density at the wall i§ low ar_1d the presence of the
demixing _, " Demixed fluid wall reduces t_he number of mteract_lng nelg_hbors. For a
U ' strongly attractive wall, however, the high density at the wall
can counteract the missing neighbor effect leading to an
overall demixing tendency.

If the net effect favors mixing at the wall, a continuous
demixing of the layer as coexistence is approached can be
excluded. A first-order transition involving a discontinuous
increase of the film thickness upon demixing is still conceiv-
able. However, we have shown in Sec. Il A, tHat the
mean-field level, at leasthe demixed wetting film has a

A
L
w]
I3
5
[
.
=

<

)

~ Temperature T

O
N=
g
0]
3
[0}
-
o
=
o

e higher free energy than the corresponding mixed film pro-
8 ) vided the correlation length of composition fluctuations is
2 | Continuous . sufficiently large.

5 | demixing 2 ; At walls that suppress demixing, the film is thus always
% mixed close to the critical end point, and its thicknégs

=]

below the critical end point is finite. Hence the critical end
point is automatically a critical wetting point. The resulting
phase diagram is shown schematically in Fig(al6Note
that the wetting transition here is pinned by a bulk phase
transition, a situation somewhat reminiscent of triple-point
(c) Density P wetting [30,11].
The situation changes if the substrate favors demixing. In
FIG. 16. Some possible schematic wetting phase diagrams in thélis situation, one component segregates to the surface of the

temperature-density plané) Weakly attractive wall: Critical end film already slightly aboveTl-gp and the order propagates
point Tcgp Of the\ line is a critical wetting point, below which the continuously into the bulk of the film afcgp. The film
wall is not wetted by the liquidtb) Intermediate attraction: Demix- remains wet aff .gp. From the results of Sec. Il @n par-

ing induced first order wetting transition &t Tcep with a prewet-  ticular, Fig. 8, one can deduce two possible scenarios. The
ting line that evolves into a second-order demixing li(@.Strong  film may still exhibit a first-order wetting transition to a non-
attraction: Complete wetting at coexistence everywhere, but deyet state at a temperature beldW.p [(€.g., in Fig. 8 at
tached prewetting line or continuous demixing transitions off coex-¢ =1.14). The discontinuous phase transition at liquid-
istence(in films of finite thickness Hatched area indicates the vapor coexistence then spawns a prewetting line, which
possibility of conventional wetting transitions at lower tempera- eventually switches into a second-order demixing line and
tures. loops around the critical end point as suggested in Fig)16
Alf the wall is strongly attractiveg(e.g., atgy=1.27 in Fig.

8], the wall wets at all temperatures, the prewetting line de-

taches from the coexistence line and is continued by second-

order demixing lines both at the high- and low-temperature

side as sketched in Fig. (@.

vapor coexistence is approached from the vapor side.
small €,,, only a very thin film builds up on the wall. For
intermediate values o€, a first prewetting transition is
observed from a thin mixed film to a thick liquidlike mixed
layer. Further increasing,, induces a second prewetting
transition between a mixed liquidlike layer and a thicker de-
mixed film, the situation being very similar to that shown in
Fig. 6. The abrupt, first-order character of this latter transi- N.B.W. thanks the Royal Society of Edinburgh, the
tion appears to weaken on further increasiyg in accord EPSRC(Grant No. GR/L9141p and the British Council for
with the theoretical predictions. financial support.
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